Jump to main content
Jump to site search

Issue 19, 2015
Previous Article Next Article

Enhanced thermoelectric properties of Sr5In2Sb6via Zn-doping

Author affiliations


Zintl phases exhibit inherently low thermal conductivity and adjustable electronic properties, which are integral to designing high-efficiency thermoelectric materials. Inspired by the promising thermoelectric figure of merit of optimized A5M2Sb6 Zintl phases (A = Ca or Sr, M = Al, Ga, In), Zn-doped Sr5In2−xZnxSb6 (x = 0, 0.025, 0.05, 0.1) compounds were investigated. Optical absorption measurements combined with band structure calculations indicate two distinct energy transitions for Sr5In2Sb6, one direct (Eg ∼ 0.3 eV) and the other from a lower valence band manifold to the conduction band edge (Eg ∼ 0.55 eV). Sr5In2Sb6 exhibits nondegenerate p-type semiconducting behavior with low carrier concentration (∼4 × 1018 h+ cm−3 at 300 K). Charge carrier tuning was achieved by Zn2+ substitution on the In3+ site, increasing carrier concentrations to up to 1020 h+ cm−3. All samples displayed relatively low thermal conductivities (∼0.7 W m−1 K−1 at 700 K). The Zn-doped samples exhibited significantly higher zT values compared to the undoped sample, reaching a value of ∼0.4 at 750 K for Sr5In1.9Zn0.1Sb6.

Graphical abstract: Enhanced thermoelectric properties of Sr5In2Sb6via Zn-doping

Back to tab navigation

Publication details

The article was received on 17 Mar 2015, accepted on 09 Apr 2015 and first published on 10 Apr 2015

Article type: Paper
DOI: 10.1039/C5TA01967B
Author version
Download author version (PDF)
Citation: J. Mater. Chem. A, 2015,3, 10289-10295
  •   Request permissions

    Enhanced thermoelectric properties of Sr5In2Sb6via Zn-doping

    S. Chanakian, A. Zevalkink, U. Aydemir, Z. M. Gibbs, G. Pomrehn, J. Fleurial, S. Bux and G. J. Snyder, J. Mater. Chem. A, 2015, 3, 10289
    DOI: 10.1039/C5TA01967B

Search articles by author