Issue 6, 2015

Preparation of three-dimensional inverse opal SnO2/graphene composite microspheres and their enhanced photocatalytic activities

Abstract

Three-dimensional inverse opal SnO2/graphene (IO-SnO2/graphene) microspheres with a size of several tens of microns are first prepared by a well-designed two-step calcination of polystyrene (PS) colloidal crystal template balls infiltrated with the sol precursors of SnO2 and graphene oxide. The polystyrene colloidal crystal template balls are formed by the self-assembly of monodispersed PS microspheres confined in water droplets of an inverse emulsion induced by the slow evaporation of water. Characterization with scanning electronic microscopy, Raman spectra, X-ray diffraction and X-ray photoelectron spectroscopy proved the ordered macroporous inverse opal composed of crystalline SnO2 and in situ reduced GO during the calcination. The pore size depends on the PS microspheres. The UV-vis diffusive reflectance spectra show that the light absorption edge of the prepared IO-SnO2/graphene microspheres can shift more than 400 nm. The photoluminescence spectra indicates that the IO structure and the introduction of rGO make the charge carriers transfer fast and retard the hole/electron recombination in the IO-SnO2/graphene microspheres so that their photocatalytic performance on the UV photolysis of methyl orange is considerably better than that of commercial SnO2 nanoparticles. However, the photocatalytic performance also depends on the content of GO. The addition of 0.06 wt% of GO achieves the best photocatalytic effect. Excessive GO will result in a diminished catalytic activity. This work provides a way to fabricate a new morphological SnO2 based materials with enhanced photocatalytic activity, which helps in the exploration of new photocatalysts with high performance.

Graphical abstract: Preparation of three-dimensional inverse opal SnO2/graphene composite microspheres and their enhanced photocatalytic activities

Supplementary files

Article information

Article type
Paper
Submitted
02 Nov 2014
Accepted
08 Dec 2014
First published
08 Dec 2014

J. Mater. Chem. A, 2015,3, 2991-2998

Preparation of three-dimensional inverse opal SnO2/graphene composite microspheres and their enhanced photocatalytic activities

L. Chen, L. Xie, M. Wang and X. Ge, J. Mater. Chem. A, 2015, 3, 2991 DOI: 10.1039/C4TA05898D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements