Issue 29, 2015

Toward an understanding of the thermosensitive behaviour of pH-responsive hydrogels based on cyclodextrins

Abstract

The molecular mechanism responsible for the thermosensitive behaviour exhibited by pH-responsive cyclodextrin-based hydrogels is explored here with the twofold aim of clarifying some basic aspects of H-bond interactions in hydrogel phases and contributing to a future engineering of cyclodextrin hydrogels for targeted delivery and release of bioactive agents. The degree of H-bond association of water molecules entrapped in the gel network and the extent of intermolecular interactions involving the hydrophobic/hydrophilic moieties of the polymer matrix are probed by UV Raman and IR experiments, in order to address the question of how these different and complementary aspects combine to determine the pH-dependent thermal activation exhibited by these hydrogels. Complementary vibrational spectroscopies are conveniently employed in this study with the aim of safely disentangling the spectral response arising from the two main components of the hydrogel systems, i.e. the polymer matrix and water solvent. The experimental evidence suggests that the dominant effects in the mechanism of solvation of cyclodextrin-based hydrogels are due to the changes occurring, upon increasing of temperature, in the hydrophobicity character of specific chemical moieties of the polymer, as triggered by pH variations. The achievements of this work corroborate the potentiality of the UV Raman scattering technique, in combination with more conventional IR experiments, to provide a “molecular view” of complex macroscopic phenomena exhibited in hydrogel phases.

Graphical abstract: Toward an understanding of the thermosensitive behaviour of pH-responsive hydrogels based on cyclodextrins

Article information

Article type
Paper
Submitted
06 May 2015
Accepted
15 Jun 2015
First published
16 Jun 2015

Soft Matter, 2015,11, 5862-5871

Author version available

Toward an understanding of the thermosensitive behaviour of pH-responsive hydrogels based on cyclodextrins

B. Rossi, V. Venuti, F. D'Amico, A. Gessini, A. Mele, C. Punta, L. Melone, V. Crupi, D. Majolino, F. Trotta and C. Masciovecchio, Soft Matter, 2015, 11, 5862 DOI: 10.1039/C5SM01093D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements