Issue 35, 2015

Capillary and winding transitions in a confined cholesteric liquid crystal

Abstract

We consider a Lebwohl–Lasher model of chiral particles confined in a planar cell (slit pore) under different boundary conditions, and solve it using mean-field theory. The phase behaviour of the system with respect to temperature and pore width is studied. Two phenomena are observed: (i) an isotropic–cholesteric transition, which exhibits an oscillatory structure with respect to pore width, and (ii) an infinite set of winding transitions caused by commensuration effects between cholesteric pitch and pore width. The latter transitions have been predicted and analysed by other authors for cholesterics confined in a fixed pore and subjected to an external field promoting the uniaxial nematic phase; here we induce winding transitions solely from geometry by changing the pore width at zero external field (a setup recently explored in atomic-force microscopy experiments). In contrast with previous studies, we obtain the phase diagram in the temperature vs. pore width plane, including the isotropic–cholesteric transition, the winding transitions and their complex relationship. In particular, the structure of winding transitions terminates at the capillary isotropic–cholesteric transition via triple points where the confined isotropic phase coexists with two cholesterics with different helix indices. For symmetric and asymmetric monostable plate anchorings the phase diagrams are qualitatively similar.

Graphical abstract: Capillary and winding transitions in a confined cholesteric liquid crystal

Article information

Article type
Paper
Submitted
30 Apr 2015
Accepted
22 Jul 2015
First published
23 Jul 2015

Soft Matter, 2015,11, 7038-7045

Capillary and winding transitions in a confined cholesteric liquid crystal

D. de las Heras, E. Velasco and Y. Martínez-Ratón, Soft Matter, 2015, 11, 7038 DOI: 10.1039/C5SM01036E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements