Issue 22, 2015

Domain expansion dynamics in stratifying foam films: experiments

Abstract

The stability, rheology and applications of foams, emulsions and colloidal sols depend on the hydrodynamics and thermodynamics of thin liquid films that separate bubbles, drops and particles respectively. Thin liquid films containing micelles, colloidal particles, liquid crystals or polyelectrolyte–surfactant mixtures exhibit step-wise thinning or stratification, often attributed to the layer-by-layer removal of the aforementioned supramolecular structures. Stratification proceeds through emergence and growth of thinner circular domains within a thicker film, and the domain expansion dynamics are the focus of this study. Domain and associated thickness variation in foam films made from sodium dodecyl sulfate (SDS) micellar solutions are examined using a Scheludko-type cell with a novel technique we call Interferometry Digital Imaging Optical Microscopy (IDIOM). Below 100 nm, stratification and drainage cause a thickness-dependent variation in reflected light intensity, visualized as progressively darker shades of gray. We show that the domain expansion dynamics exhibit two distinct growth regimes with characteristic scaling laws. Initially, the radius of the isolated domains grows with square root time, and the expansion rate can be characterized by an apparent diffusion constant. In contrast, after a section of the expanding domain coalesces with the Plateau border, the contact line between domain and the surrounding thicker region moves a constant velocity. We show that a similar transition from a constant diffusivity to a constant velocity regime is also realized when a topological instability occurs at the contact line between the growing thinner isolated domain and the surrounding thicker film. Though several studies have focused on the expansion dynamics of isolated domains that exhibit a diffusion-like scaling, the change in expansion kinetics observed after domains contact with the Plateau border has not been reported and analyzed before.

Graphical abstract: Domain expansion dynamics in stratifying foam films: experiments

Supplementary files

Article information

Article type
Paper
Submitted
08 Jan 2015
Accepted
08 Apr 2015
First published
09 Apr 2015

Soft Matter, 2015,11, 4408-4417

Author version available

Domain expansion dynamics in stratifying foam films: experiments

Y. Zhang and V. Sharma, Soft Matter, 2015, 11, 4408 DOI: 10.1039/C5SM00066A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements