Issue 12, 2015

Controlling enantiomeric populations in fluctuating Brownian monolayers of chiral colloids

Abstract

An ideal parallelogram platelet, although achiral in 3D, has an identifiable chirality when confined in a 2D monolayer. We lithographically fabricate microscale parallelogram platelets, disperse them in an aqueous surfactant solution, and allow them to settle towards a lower glass wall. To reduce the thermal-gravitational height, we add polystyrene nanospheres as a depletion agent to create a depletion attraction between the parallelograms and the wall. Surprisingly, by increasing the volume fraction of the depletion agent, we show that a nearly enantiopure monolayer can be created. We explain this by developing a model of 2D monolayer formation based on anisotropic facial attractions; one face of a platelet is more strongly attracted to the wall than the other as a consequence of an anisotropy introduced by the lithographic process. We study enantiopure Brownian systems of parallelograms as a function of particle area fraction and show that oblique chiral crystals form at high densities. By mixing parallelogram platelets printed in opposite senses, we also dictate the chiral ratio in the monolayer over the entire possible range. This approach is not limited to parallelograms and provides a means for tuning the chiral ratio in fluctuating 2D monolayers composed of a wide variety of chiral shapes.

Graphical abstract: Controlling enantiomeric populations in fluctuating Brownian monolayers of chiral colloids

Supplementary files

Article information

Article type
Paper
Submitted
08 Dec 2014
Accepted
29 Jan 2015
First published
02 Feb 2015

Soft Matter, 2015,11, 2461-2468

Controlling enantiomeric populations in fluctuating Brownian monolayers of chiral colloids

L. Rossi and T. G. Mason, Soft Matter, 2015, 11, 2461 DOI: 10.1039/C4SM02723J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements