Issue 11, 2015

Atomistic simulations of the structure of highly crosslinked sulfonated poly(styrene-co-divinylbenzene) ion exchange resins

Abstract

The microscopic structures of highly crosslinked sulfonated poly(styrene-co-divinylbenzene) resins have been modeled by generating atomistic microstructures using stochastic-like algorithms, which are subsequently relaxed using molecular dynamics. Two different generation algorithms have been tested. The relaxation of the microstructures generated by the first algorithm, which is based on a homogeneous construction of the resin, leads to a significant overestimation of the experimental density as well as to an unsatisfactory description of the porosity. In contrast, the generation approach that combines algorithms for the heterogeneous growing and branching of the chains enables the formation of crosslinks with different topologies. In particular, the intrinsic heterogeneity observed in these resins is efficiently reproduced when the topological loops, which are defined by two or more crosslinks closing a cycle, are present in their microscopic description. Thus, the apparent density, porosity and pore volume estimated using microstructures with these topological loops, called super-crosslinks, are in very good agreement with the experimental results. Although the backbone dihedral angle distribution of the generated and relaxed models is not influenced by the topology, the number and type of crosslinks affect the medium- and long-range atomic disposition of the backbone atoms and the distribution of sulfonic groups. An analysis of the distribution of the local density indicates that super-crosslinks are responsible for the heterogeneous homogenization observed during the MD relaxation. Finally the π–π stacking interactions have been analyzed. Results indicate that those in which the two rings adopt a T-shaped disposition are considerably more abundant as compared to those with the co-facially oriented rings, independently of the resin topology.

Graphical abstract: Atomistic simulations of the structure of highly crosslinked sulfonated poly(styrene-co-divinylbenzene) ion exchange resins

Article information

Article type
Paper
Submitted
01 Nov 2014
Accepted
16 Jan 2015
First published
16 Jan 2015

Soft Matter, 2015,11, 2251-2267

Author version available

Atomistic simulations of the structure of highly crosslinked sulfonated poly(styrene-co-divinylbenzene) ion exchange resins

M. A. Pérez-Maciá, D. Curcó, R. Bringué, M. Iborra and C. Alemán, Soft Matter, 2015, 11, 2251 DOI: 10.1039/C4SM02417F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements