Jump to main content
Jump to site search

Issue 1, 2015

Droplet coalescence on water repellant surfaces

Author affiliations

Abstract

We report our hydrodynamic and energy analyses of droplet coalescence on water repellent surfaces including hydrophobic, superhydrophobic and oil-infused superhydrophobic surfaces. The receding contact angle has significant effects on the contact line dynamics since the contact line dissipation was more significant during the receding mode than advancing. The contact line dynamics is modeled by the damped harmonic oscillation equation, which shows that the damping ratio and angular frequency of merged droplets decrease as the receding contact angle increases. The fast contact line relaxation and the resulting decrease in base area during coalescence were crucial to enhance the mobility of coalescing sessile droplets by releasing more surface energy with reducing dissipation loss. The superhydrophobic surface converts ∼42% of the released surface energy to the kinetic energy via coalescence before the merged droplet jumps away from the surface, while oil-infused superhydrophobic and hydrophobic surfaces convert ∼30% and ∼22%, respectively, for the corresponding time. This work clarifies the mechanisms of the contact line relaxation and energy conversion during the droplet coalescence on water repellent surfaces, and helps develop water repellent condensers.

Graphical abstract: Droplet coalescence on water repellant surfaces

Article information


Submitted
25 Jul 2014
Accepted
30 Sep 2014
First published
30 Sep 2014

Soft Matter, 2015,11, 154-160
Article type
Paper
Author version available

Droplet coalescence on water repellant surfaces

Y. Nam, D. Seo, C. Lee and S. Shin, Soft Matter, 2015, 11, 154 DOI: 10.1039/C4SM01647E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements