Jump to main content
Jump to site search

Issue 1, 2016
Previous Article Next Article

Mechanical energy storage performance of an aluminum fumarate metal–organic framework

Author affiliations

Abstract

The aluminum fumarate MOF A520 or MIL-53–FA is revealed to be a promising material for mechanical energy-related applications with performances in terms of work and heat energies which surpass those of any porous solids reported so far. Complementary experimental and computational tools are deployed to finely characterize and understand the pressure-induced structural transition at the origin of these unprecedented levels of performance.

Graphical abstract: Mechanical energy storage performance of an aluminum fumarate metal–organic framework

Back to tab navigation

Supplementary files

Article information


Submitted
30 Jul 2015
Accepted
02 Oct 2015
First published
05 Oct 2015

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2016,7, 446-450
Article type
Edge Article
Author version available

Mechanical energy storage performance of an aluminum fumarate metal–organic framework

P. G. Yot, L. Vanduyfhuys, E. Alvarez, J. Rodriguez, J. Itié, P. Fabry, N. Guillou, T. Devic, I. Beurroies, P. L. Llewellyn, V. Van Speybroeck, C. Serre and G. Maurin, Chem. Sci., 2016, 7, 446
DOI: 10.1039/C5SC02794B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements