One-pot synthesis of a three-dimensional graphene aerogel supported Pt catalyst for methanol electrooxidation†
Abstract
A three-dimensional (3D) structured Pt/graphene aerogel has been synthesized by a facile one-pot solvothermal process. The as-synthesized catalyst is characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and electrochemical tests. It has been found that the Pt/graphene aerogel catalyst exhibits a well-developed 3D interconnected porous graphene framework with Pt nanoparticles (NPs) decorated on the surface of the graphene aerogel. More importantly, the as-made Pt/graphene aerogel catalyst exhibits a much higher electrocatalytic activity and stability than the Pt/graphene for methanol electrooxidation. The enhancement may result from the unique 3D graphene architecture, and the efficient assembly between the Pt NPs and graphene aerogel. These outstanding properties suggest that the Pt/graphene aerogel catalyst holds tremendous potential for fuel cell applications.