Layered manganese oxides for formaldehyde-oxidation at room temperature: the effect of interlayer cations
Abstract
A series of K-, Mg-, Ca-, and Fe-containing birnessites were prepared by a facile comproportionation reaction of Mn2+ and MnO4− in the presence of different metal cations. The as-synthesized birnessite samples were characterized by FESEM, XRD, TG, and XPS. The catalytic activity toward decomposition of HCHO was evaluated under ambient temperature. Fe-birnessite showed the highest HCHO oxidation activity due to its highest content of surface hydroxyl groups. However, the CO2 generation by Fe-birnessite was relatively low due to the accumulation of formate species without further oxidation. The influence of different interlayer cations on the activity of birnessite was studied by H2-TPR, O2-TPD, and HCHO in situ DRIFTS. The result indicates that K+ leads to a considerable enhancement of surface oxygen activity which then facilitates the regeneration of surface hydroxyls by activating H2O, therefore K-birnessite showed the highest CO2 generation performance during HCHO removal at ambient temperature. HCHO of 0.5 mg m−3 and the gas hourly space velocity (GHSV) of 1 200 000 h−1 (the corresponding contact time is 0.003 s) were selected to check the stability of the samples. K-Bir still showed stable activity with the removal efficiency reaching 40% under these critical test conditions. Considering the effect of introducing different metal cations, this work provides new insight into designing high performance catalysts for indoor air purification.
Please wait while we load your content...