Synthesis, properties and thermal behavior of poly(decylene-2,5-furanoate): a biobased polyester from 2,5-furan dicarboxylic acid†
Abstract
In the present study, an interesting, eco-friendly polyester, poly(decylene-2,5-furanoate) (PDeF) was synthesized from 2,5-furan dicarboxylic acid with a variation of the well-known two-step melt polycondensation method. The crystallization and melting behavior of PDeF, was evaluated with different calorimetric methods; conventional, fast and temperature modulated scanning calorimetry. The results showed that PDeF is a fast crystallizing polyester, with a glass transition close to 1 °C and an equilibrium melting temperature equal to 129.8 °C. Various crystallization temperatures and rates were employed in order to evaluate in detail the thermal characteristics of PDeF. Isothermal and non-isothermal crystallization kinetics were also investigated by means of Avrami, Lauritzen–Hoffman theories and model-free kinetics. The structural features of PDeF were also studied by X-ray diffraction (XRD) and nuclear magnetic resonance (1H-NMR) while the size and density of spherulites was observed by polarized optical microscopy (POM) after crystallization in a wide range of temperatures. Finally, from tensile testing it was realized that PDeF has similar mechanical properties like tensile strength and Young's modulus to that of low density polyethylene (LDPE).
Please wait while we load your content...