Issue 113, 2015

Branched gold nanoparticles on ZnO 3D architecture as biomedical SERS sensors

Abstract

Surface-enhanced Raman spectroscopy (SERS) widely improves the sensitivity of traditional Raman analysis, thus allowing this technique to be exploited for the development of new bio-analytical tests. In this work, 3D substrates made of zinc oxide tetrapods (ZnOTP) are decorated with branched gold nanoparticles by means of a new photochemical approach. The SERS enhancing properties of the obtained substrate are tested using different Raman dyes and apomorphine, a drug used for the management of Parkinson disease. The results prove that the enhancing properties depend on the shape of the gold nanoparticles grown on the branches of ZnO tetrapods. The optimized substrate here developed is characterized by an enhancing factor up to 7 × 106 and a detection limit for apomorphine of 1 μM. Finally, the new substrates are tested to study single cancer cells showing enhanced Raman signals related to the portion of the cell interacting with the 3D structure of the substrate.

Graphical abstract: Branched gold nanoparticles on ZnO 3D architecture as biomedical SERS sensors

Supplementary files

Article information

Article type
Paper
Submitted
07 Jul 2015
Accepted
26 Oct 2015
First published
26 Oct 2015

RSC Adv., 2015,5, 93644-93651

Author version available

Branched gold nanoparticles on ZnO 3D architecture as biomedical SERS sensors

S. Picciolini, N. Castagnetti, R. Vanna, D. Mehn, M. Bedoni, F. Gramatica, M. Villani, D. Calestani, M. Pavesi, L. Lazzarini, A. Zappettini and C. Morasso, RSC Adv., 2015, 5, 93644 DOI: 10.1039/C5RA13280K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements