Issue 93, 2015

Application and experimental study of Cyclic Foam Stimulation

Abstract

Formation damage is a serious problem in oil and gas industries. Based on common reservoir damage, the conditions and factors resulting in damage were summarized into four categories in this paper. The worldwide advanced technologies applied in reservoir damage treatment are reviewed. For the first time, we propose the concept of injecting nitrogen foam into a formation to treat the damage caused by sand blocking. An application of Cyclic Foam Stimulation is introduced, which enhances productivity significantly. Experimental apparatus for the Cyclic Foam Stimulation was designed, which included a wellbore vessel that could stimulate the effect of sand setting. A reservoir vessel was also designed to supply the foam. Additionally, in order to simulate the formation damage caused by the size and distribution of fine sand, six artificial cores, which were porosity contrastive and sand producing, were prepared based on the technologies of pressure control and PVA membrane wrapping. The experimental results show that the foam has a good discharging effect on sand blockages. Moreover, the effects of the size and distribution of the fine sand on the porosity was studied. It was found that the smaller the size of the grains and the more uniform the grain distribution, the worse the formation porosity. A porosity recovery factor has been defined and the recovery rate of the porosity was also studied. A scientific guide for the application of Cyclic Foam Stimulation can be generated from the studies in this paper.

Graphical abstract: Application and experimental study of Cyclic Foam Stimulation

Article information

Article type
Paper
Submitted
27 Jun 2015
Accepted
27 Aug 2015
First published
27 Aug 2015

RSC Adv., 2015,5, 76435-76441

Author version available

Application and experimental study of Cyclic Foam Stimulation

J. Zhang, X. Wu, Z. Chen, G. Han, J. Wang, Z. Ren and K. Zhang, RSC Adv., 2015, 5, 76435 DOI: 10.1039/C5RA12437A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements