Issue 79, 2015

Targeting delivery and deep penetration using multistage nanoparticles for triple-negative breast cancer

Abstract

Targeting delivery and deep penetration have been attracting tremendous attention in triple-negative breast cancer (TNBC) theranostics. Herein, we reported a novel multistage system (G-AuNPs-DOX-RRGD) with an active targeting effect and size-changeable property to inhibit tumor growth and metastasis in 4T1 xenograft bearing mice. The system was constructed through fabricating small-size gold nanoparticles (AuNPs) onto matrix metalloproteinase-2 (MMP-2) degradable gelatin nanoparticles (GNPs). Doxorubicin (DOX) was tethered onto AuNPs via a pH sensitive hydrazone bond, and RRGD, a tandem peptide of RGD and octarginine, was surface-decorated onto the system to improve its tumor targeting efficiency. In vitro, the G-AuNPs-DOX-RRGD could shrink from 185.9 nm to 71.2 nm after 24 h incubation with MMP-2 and the DOX was released in a pH-dependent manner. Tumor spheroid penetration and collagen diffusion demonstrated G-AuNPs-DOX-RRGD possessed best penetrating efficiency. In vivo, the G-AuNPs-DOX-RRGD actively targeted to the 4T1 tumor and then penetrated through the interstitial matrix, resulted in enhanced accumulation in the deep tumor region. Therefore, the G-AuNPs-DOX-RRGD could approach excellent anti-tumor capacity owing to the synergistic effect of RRGD and the size-changeable property.

Graphical abstract: Targeting delivery and deep penetration using multistage nanoparticles for triple-negative breast cancer

Supplementary files

Article information

Article type
Paper
Submitted
27 Jun 2015
Accepted
22 Jul 2015
First published
22 Jul 2015

RSC Adv., 2015,5, 64303-64317

Author version available

Targeting delivery and deep penetration using multistage nanoparticles for triple-negative breast cancer

S. Ruan, L. Zhang, J. Chen, T. Cao, Y. Yang, Y. Liu, Q. He, F. Gao and H. Gao, RSC Adv., 2015, 5, 64303 DOI: 10.1039/C5RA12436K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements