C-doped boron nitride fullerene as a novel catalyst for acetylene hydrochlorination: a DFT study†
Abstract
Density functional theory calculations were used to investigate the mechanism of acetylene hydrochlorination separately catalyzed by un-doped B12N12 and carbon-doped BN fullerene (B12−nN11+nC (n = 0, 1)). We have discovered that carbon-doped BN clusters displayed extraordinary catalyst performance for acetylene hydrochlorination compared with un-doped B12N12 clusters. C2H2 was adsorbed onto B12−nN11+nC (n = 0, 1) clusters prior to HCl and then formed three adsorption states. The first two states were in a trans configuration, in which the two H atoms of C2H2 were on opposite sides of the CC bond; the third state was a cis configuration, in which the two H atoms were on the same side of the CC bond. Afterwards, we illustrated three possible pathways with corresponding transition states. In particular, the minimum energy pathway R1 based on the B11N12C catalyst had an energy barrier as low as 36.08 kcal mol−1, with only one transition state.