Issue 69, 2015

AgAl alloy electrode for efficient perovskite solar cells

Abstract

We report efficient mixed halide perovskite solar cells using thermally evaporated Ag or AgAl alloy layers as back electrodes. The properties of AgAl alloy and Ag films deposited on a hole-transport material layer for use in CH3NH3PbI3−xClx solar cells were investigated. The influence of the distance between the metal source and the sample on the performance of the solar cells was determined. The cell with an Ag layer deposited at a distance of 20 cm displayed a power conversion efficiency (PCE) of 5.49%. When the Ag layer was deposited at a distance of 30 cm, the resulting device achieved a 46.8% enhancement in PCE compared to the cell with the Ag prepared at 20 cm. Furthermore, the AgAl alloy based perovskite solar cell accomplished a 37.3% enhancement in PCE compared to the optimized Ag electrode. The fabricated AgAl alloy perovskite cells show a fill factor of 59.6%, open-circuit voltage of 0.88 V, short-circuit current density of 21.11 mA cm−2, yielding an overall efficiency of 11.07%. The AgAl alloy layer exhibited high optical reflectivity and good adhesion on the hole-transport material layer compared to a layer of Ag. The PCE enhancement mechanisms are discussed. Our work has demonstrated that AgAl is a promising back electrode material for high-efficiency perovskite solar cells.

Graphical abstract: AgAl alloy electrode for efficient perovskite solar cells

Article information

Article type
Paper
Submitted
07 Apr 2015
Accepted
18 Jun 2015
First published
18 Jun 2015

RSC Adv., 2015,5, 56037-56044

Author version available

AgAl alloy electrode for efficient perovskite solar cells

Y. Luo, X. Chen, C. Zhang, J. Li, J. Shi, Z. Sun, Z. Wang and S. Huang, RSC Adv., 2015, 5, 56037 DOI: 10.1039/C5RA06133D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements