A simple route to CoFe2O4 nanoparticles with shape and size control and their tunable peroxidase-like activity†
Abstract
Recent studies have suggested that the physical and chemical properties of nanoparticles (NPs) strongly depend on local chemical composition, size, and shape. Here, we report a new precursor-mediated growth of monodisperse magnetic cobalt ferrite (CoFe2O4) NPs with controlled size and shape. CoFe2O4 NPs with near corner-grown cubic, near cubic and polyhedron shape can be successfully prepared by simply tuning the amount of iron and cobalt acetylacetonates in oleic acid. Interestingly, the product shape varies from near corner-grown cubic to starlike by only changing the reaction temperature from 320 °C to 330 °C. These CoFe2O4 NPs exhibit size and shape-dependent peroxidase-like activity towards 3,3′,5,5′-tetramethylbenzdine (TMB) in the presence of H2O2, and thus exhibited different levels of peroxidase-like activities, in the order of spherical > near corner-grown cubic > starlike > near cubic > polyhedron; this order was closely related to their particle size and crystal morphology. CoFe2O4NPs exhibited high stability in HAc–NaAc buffer (pH = 4.0) and high activity over a broad pH (2.5–6.0). Furthermore, the Michaelis constants Km value for the CoFe2O4 NPs (0.006 mM) with TMB as the substrate was lower than HRP (0.062 mM) and Fe3O4 NPs (0.010 mM). After further surface functionalization with folic acid (FA), the folate-conjugated CoFe2O4 nanoparticles allow discrimination of HeLa cells (folate receptor overexpression) from NIH-3T3 cells (without folate receptor expression). Such investigation is of great significance for peroxidase nanomimetics with enhanced activity and utilization.