Issue 26, 2015

Insight into C + O(OH) reaction for carbon elimination on different types of CoNi(111) surfaces: a DFT study

Abstract

A density-functional theory (DFT) method has been performed to investigate the reaction of C + O(OH) on three types of bimetallic alloy CoNi(111) surface, and the results obtained are compared with those on the pure Ni(111) surface. Our results show that the introduction of Co into the Ni catalyst is beneficial for the adsorption of C, O and OH species, while it weakens the adsorption of CO. Moreover, O(OH) absorbs preferentially on the CoNi(111) surfaces with the surface enrichment of Co compared with the homogeneous CoNi(111) surface; the increased degree of O adsorption energy outweighs the corresponding values of C on the pure Ni(111) and three types of bimetallic alloy CoNi(111) surfaces, indicating that Co has a stronger affinity for oxygen species than for carbon species. On the other hand, the mechanism of the C + O(OH) reaction and the corresponding rate constants at different temperatures show that OH species have a stronger ability to eliminate carbon than O species on Ni(111) and CoNi(111) surfaces; on the CoNi(111) surface, when the Co surface coverage is equal to 1 monolayer (ML), compared to Ni(111), the C + O reaction can be accelerated. When the Co surface coverage is equal to 3/4 ML, the C + OH reaction is the most favorable; further, the rate constant for the C + OH reaction on a CoNi(111) with Co surface coverage of 3/4 ML is much larger than that of the C + O reaction on a CoNi(111) with Co surface coverage of 1 ML. As a result, for carbon elimination on the CoNi alloy surface, OH species should serve as the key species for carbon elimination, and the Co surface coverage of CoNi(111) surface should be kept at 3/4 ML.

Graphical abstract: Insight into C + O(OH) reaction for carbon elimination on different types of CoNi(111) surfaces: a DFT study

Supplementary files

Article information

Article type
Paper
Submitted
01 Dec 2014
Accepted
04 Feb 2015
First published
05 Feb 2015

RSC Adv., 2015,5, 19970-19982

Author version available

Insight into C + O(OH) reaction for carbon elimination on different types of CoNi(111) surfaces: a DFT study

X. Guo, H. Liu, B. Wang, Q. Wang and R. Zhang, RSC Adv., 2015, 5, 19970 DOI: 10.1039/C4RA15555F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements