Issue 29, 2015

A facile method to enhance ferroelectric properties in PVDF nanocomposites

Abstract

Poly(vinylidene fluoride) (PVDF)/nanoclay composites were prepared using melt compounding. The effect of acrylic rubber (ACM) as a compatibilizer on different polymorph formation and on the ferroelectric properties of nanocomposites were investigated. The intercalation and morphological structure of the samples were studied using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The infrared spectroscopy and X-ray analysis revealed the coexistence of β and γ crystalline forms in PVDF–clay nanocomposite, while in partially miscible PVDF/ACM/clay hybrids, three polymorphs of α, β and γ coexisted. The coefficients of electric field–polarization (EP) Taylor expansion were calculated based on the Lorentz theory. Using a genetic algorithm, complex dielectric susceptibilities as well as the dielectric constants for each sample were calculated and optimized. The predicted dielectric constants were found to be in good agreement with the experimental results. A dielectric constant of 16 (10 Hz) was obtained for PVDF/ACM/clay (90/10/5), which was 40% higher than that of the PVDF–clay (100/5) nanocomposite without ACM. The improved dielectric performance of the nanocomposites can be attributed to the compatibilizing effect of ACM, which facilitated the growth of β polymorph in the sample.

Graphical abstract: A facile method to enhance ferroelectric properties in PVDF nanocomposites

Article information

Article type
Paper
Submitted
11 Oct 2014
Accepted
11 Feb 2015
First published
12 Feb 2015

RSC Adv., 2015,5, 22471-22479

Author version available

A facile method to enhance ferroelectric properties in PVDF nanocomposites

M. M. Abolhasani, F. Zarejousheghani, Z. Cheng and M. Naebe, RSC Adv., 2015, 5, 22471 DOI: 10.1039/C4RA12221F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements