Issue 40, 2015

Hypercrosslinked porous polymer nanosheets: 2D RAFT agent directed emulsion polymerization for multifunctional applications

Abstract

Two-dimensional hyper-cross-linked microporous polymers (2D HCPs) have been readily synthesized by emulsion polymerization using trithiocarbonate functionalized graphene oxide as a 2D reversible addition–fragmentation chain transfer (RAFT) agent. After a gel-type and permanently porous poly(vinylbenzyl chloride-co-divinylbenzene) precursor resin was grafted to the graphene surface, an FeCl3-promoted Friedel–Crafts reaction was carried out for benzyl chloride groups to construct a porous structure confined within 2D nanosheets. The resulting HCPs exhibited superhydrophobic behavior, and had a predominance of micropores with a specific surface area of up to 1224 m2 g−1. Moreover, they showed improved thermal stability in comparison with unadorned HCPs obtained without using the graphene template. Their H2 and CO2 capacities at 77 and 273 K reached 1.27 and 9.74 wt%, respectively, at a relative pressure of 0.99. In addition, the as-synthesized 2D HCPs were used as carbon precursors to generate 2D porous carbons with a high specific surface area (871 m2 g−1) and high-performance electrochemical energy storage (144 F g−1 at 0.5 A g−1).

Graphical abstract: Hypercrosslinked porous polymer nanosheets: 2D RAFT agent directed emulsion polymerization for multifunctional applications

Supplementary files

Article information

Article type
Paper
Submitted
29 Jul 2015
Accepted
25 Aug 2015
First published
26 Aug 2015
This article is Open Access
Creative Commons BY-NC license

Polym. Chem., 2015,6, 7171-7178

Hypercrosslinked porous polymer nanosheets: 2D RAFT agent directed emulsion polymerization for multifunctional applications

W. Zhao, Z. Hou, Z. Yao, X. Zhuang, F. Zhang and X. Feng, Polym. Chem., 2015, 6, 7171 DOI: 10.1039/C5PY01194A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements