A facile route to diverse assemblies by host–guest recognition†
Abstract
Self-assembly provides a powerful approach for generating complex materials with advanced functionalities. Currently it remains a great challenge to create hierarchically structured assemblies from materials with simple molecular structure. Further, successful clinical translation of polymer assemblies-based therapeutics requires facile yet effective strategies for their fabrication and cargo loading based on structurally simple and cost-effective starting materials. Herein we partly addressed these issues by an all-in-one strategy involving host–guest assembly via molecular recognition, in which carboxyl-bearing compounds serve as guest molecules, while N-substituted acrylamide homopolymers or their various copolymers are host materials. Assembly and therapeutic loading can be simultaneously realized by this one-pot approach, leading to superstructures across length scales and with multiple morphologies, such as micelle-like nanoparticles, vesicles, nano- and microspheres, microtubes, and onion-like multilayer structures. In addition to biomedical applications, superstructures generated by this simple and robust strategy have potential uses in templated synthesis, catalysis, optics, and microelectronics.