Issue 10, 2015

Bioreducible polyethylenimine nanoparticles for the efficient delivery of nucleic acids

Abstract

Recently, non-viral vectors for nucleic acid delivery have received considerable attention. Among the various non-viral vectors, branched polyethylenimine (bPEI, 25 kDa) has been one of the most widely used carrier systems due to its high transfection efficiency, however, it imparts high cytotoxicity. In this study, we have crosslinked bPEI with a bioreducible linker, 3,3′-dithiodipropionic acid (DTPA), via electrostatic interactions to obtain DTPA crosslinked bPEI (DP) nanoparticles. The crosslinking significantly reduced the cytotoxicity of the nanoparticles. To arrive at the best formulation in terms of nucleic acid transfection, a series of DP nanoparticles were prepared by varying the percentage of crosslinking. The dual action of DTPA, i.e. partial blocking of the charge density as well as crosslinking to convert bPEI into its nanoparticles, did not alter the pDNA condensation ability of the so-formed nanoparticles, rather the strategy favoured the unpackaging of the complexes inside the cells improving the release of pDNA, which resulted in a higher transfection efficiency. All the formulations carried nucleic acids inside the cells and exhibited significantly higher transfection efficiencies than native bPEI and the commercial transfection reagent, Lipofectamine™. Sequential siRNA delivery displayed significant suppression in the target gene expression. All together, the evaluation of the delivery systems demonstrates that the newly synthesized DP NPs are quite promising as non-viral gene carriers.

Graphical abstract: Bioreducible polyethylenimine nanoparticles for the efficient delivery of nucleic acids

Supplementary files

Article information

Article type
Paper
Submitted
16 Dec 2014
Accepted
14 Jan 2015
First published
14 Jan 2015

Org. Biomol. Chem., 2015,13, 3128-3135

Author version available

Bioreducible polyethylenimine nanoparticles for the efficient delivery of nucleic acids

R. Bansal, S. Tayal, K. C. Gupta and P. Kumar, Org. Biomol. Chem., 2015, 13, 3128 DOI: 10.1039/C4OB02614D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements