Jump to main content
Jump to site search

Issue 4, 2016
Previous Article Next Article

Towards a general growth model for graphene CVD on transition metal catalysts

Author affiliations

Abstract

The chemical vapour deposition (CVD) of graphene on three polycrystalline transition metal catalysts, Co, Ni and Cu, is systematically compared and a first-order growth model is proposed which can serve as a reference to optimize graphene growth on any elemental or alloy catalyst system. Simple thermodynamic considerations of carbon solubility are insufficient to capture even basic growth behaviour on these most commonly used catalyst materials, and it is shown that kinetic aspects such as carbon permeation have to be taken into account. Key CVD process parameters are discussed in this context and the results are anticipated to be highly useful for the design of future strategies for integrated graphene manufacture.

Graphical abstract: Towards a general growth model for graphene CVD on transition metal catalysts

Back to tab navigation

Supplementary files

Article information


Submitted
05 Oct 2015
Accepted
18 Dec 2015
First published
22 Dec 2015

This article is Open Access

Nanoscale, 2016,8, 2149-2158
Article type
Paper
Author version available

Towards a general growth model for graphene CVD on transition metal catalysts

A. Cabrero-Vilatela, R. S. Weatherup, P. Braeuninger-Weimer, S. Caneva and S. Hofmann, Nanoscale, 2016, 8, 2149
DOI: 10.1039/C5NR06873H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements