Issue 15, 2015

Positively-charged reduced graphene oxide as an adhesion promoter for preparing a highly-stable silver nanowire film

Abstract

An ultrathin conductive adhesion promoter using positively charged reduced graphene oxide (rGO-NH3+) has been demonstrated for preparing highly stable silver nanowire transparent conductive electrodes (AgNW TCEs). The adhesion promoter rGO-NH3+, spray coated between the substrate and AgNWs, significantly enhances the chemical and mechanical stabilities of the AgNW TCEs. Besides, the ultrathin thickness of the rGO-NH3+ ensures excellent optical transparency and mechanical flexibility for TCEs. The AgNW films prepared using the adhesion promoter are extremely stable under harsh conditions, including ultrasonication in a variety of solvents, 3M Scotch tape detachment test, mechanical bending up to 0.3% strain, or fatigue over 1000 cycles. The greatly enhanced adhesion force is attributed to the ionic interactions between the positively charged protonated amine groups in rGO-NH3+ and the negatively charged hydroxo- and oxo-groups on the AgNWs. The positively charged GO-NH3+ and commercial polycationic polymer (poly allylamine hydrochloride) are also prepared as adhesion promoters for comparison with rGO-NH3+. Notably, the closely packed hexagonal atomic structure of rGO offers better barrier properties to water permeation and demonstrates promising utility in durable waterproof electronics. This work offers a simple method to prepare high-quality TCEs and is believed to have great potential application in flexible waterproof electronics.

Graphical abstract: Positively-charged reduced graphene oxide as an adhesion promoter for preparing a highly-stable silver nanowire film

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2015
Accepted
13 Mar 2015
First published
16 Mar 2015

Nanoscale, 2015,7, 6798-6804

Author version available

Positively-charged reduced graphene oxide as an adhesion promoter for preparing a highly-stable silver nanowire film

Q. Sun, S. J. Lee, H. Kang, Y. Gim, H. S. Park and J. H. Cho, Nanoscale, 2015, 7, 6798 DOI: 10.1039/C5NR00777A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements