Issue 8, 2015

Morphology-controlled In2O3 nanostructures enhance the performance of photoelectrochemical water oxidation

Abstract

Nanotower- and nanowall-like indium oxide structures were grown directly on fluorine-doped tin oxide (FTO)/In2O3 seeded substrates and pristine FTO substrates, respectively, by a straightforward solvothermal method. The tower-like nanostructures are proposed to form via a self-assembly process on the In2O3 seeds. The wall-like nanostructures are proposed to form via epitaxial growth from the exposed edges of SnO2 crystals of the FTO substrate. The nanotowers and nanowalls are composed of highly crystalline and ordered nanocrystals with preferred orientations in the [111] and [110] directions, respectively. The two structures display remarkably different activities when used as photoanodes in solar light-driven water splitting. X-ray photoelectron spectroscopy results suggest an increased density of hydroxyl groups in the nanowalls, which results in a decrease of the work function and a concomitant shift in the onset potential of the photocurrent in the linear sweep voltammograms, which is further confirmed by Mott–Schottky and flat-band potential measurements, indicating the importance of hydroxyl content in determining the photoelectrochemical properties of the films. Morphology-controlled, nanostructured transparent conducting oxide electrodes of the kind described in this paper are envisioned to provide valuable platforms for supporting catalysts and co-catalysts that are intentionally tailored for efficient light-assisted oxidation of water and reduction of carbon dioxide.

Graphical abstract: Morphology-controlled In2O3 nanostructures enhance the performance of photoelectrochemical water oxidation

Supplementary files

Article information

Article type
Paper
Submitted
15 Dec 2014
Accepted
20 Jan 2015
First published
21 Jan 2015

Nanoscale, 2015,7, 3683-3693

Author version available

Morphology-controlled In2O3 nanostructures enhance the performance of photoelectrochemical water oxidation

C. Chen, J. Moir, N. Soheilnia, B. Mahler, L. Hoch, K. Liao, V. Hoepfner, P. O'Brien, C. Qian, L. He and G. A. Ozin, Nanoscale, 2015, 7, 3683 DOI: 10.1039/C4NR07394K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements