Issue 19, 2015

Efficiency optimisation of proteins on a chip

Abstract

This study elucidates that the protein reorientation on a chip can be changed by an external electric field (EEF) and optimised for achieving strong effective binding between proteins. Protein A and its binding protein immunoglobulin G (IgG) were used as an example, in addition to an anticancer peptide (CB1a) and its antibody (anti-CB1a). The binding forces (BFs) were measured by atomic force microscopy (AFM) with EEFs applied at different angles (EEF°). The optimal angle (OA) of the EEF (OAEEF°) corresponding to the maximum binding force (BFmax) was obtained. The results showed that the BFmax values between IgG/Protein A and anti-CB1a/CB1a were 6424.2 ± 195.3 pN (OAEEF° = 45°) and 729.1 ± 33.2 pN (OAEEF° = 22.5°), respectively. Without an EEF, the BF values were only 730.0 ± 113.9 pN and 337.3 ± 35.0 pN, respectively. Based on these observations, we concluded that the efficient optimisation of protein–protein interaction on a chip is essential. This finding is applicable to the industrial fabrication of all protein chips.

Graphical abstract: Efficiency optimisation of proteins on a chip

Article information

Article type
Paper
Submitted
27 Jul 2015
Accepted
29 Jul 2015
First published
06 Aug 2015

Lab Chip, 2015,15, 3897-3904

Author version available

Efficiency optimisation of proteins on a chip

W. Wu, H. Huang, W. Hsu, R. Hsu and H. Chen, Lab Chip, 2015, 15, 3897 DOI: 10.1039/C5LC00879D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements