Volume 188, 2016

Supports and modified nano-particles for designing model catalysts

Abstract

In order to design catalytic materials, we need to understand the essential causes for material properties resulting from its composite nature. In this paper we discuss two, at first sight, diverse aspects: (a) the effect of the oxide–metal interface on metal nanoparticle properties and (b) the consequences of metal particle modification after activation on the selectivity of hydrogenation reactions. However, these two aspects are intimately linked. The metal nanoparticle’s electronic structure changes at the interface as a catalyst is brought to different reaction temperatures due to morphological modifications in the metal and, as we will discuss, these changes in the chemistry lead to changes in the reaction path. As the morphology of the particle varies, facets of different orientations and sizes are exposed, which may lead to a change in the surface chemistry as well. We use two specific reactions to address these issues in some detail. To the best of our knowledge, the present paper reports the first observations of this kind for well-defined model systems. The changes in the electronic structure of Au nanoparticles due to their size and interaction with a supporting oxide are revealed as a function of temperature using CO2 activation as a probe. The presence of spectator species (oxopropyl), formed during an activation step of acrolein hydrogenation, strongly controls the selectivity of the reaction towards hydrogenation of the unsaturated C[double bond, length as m-dash]O bond vs. the C[double bond, length as m-dash]C bond on Pd(111) when compared with oxide-supported Pd nanoparticles.

Associated articles

Article information

Article type
Paper
Submitted
09 Oct 2015
Accepted
21 Oct 2015
First published
22 Oct 2015

Faraday Discuss., 2016,188, 309-321

Supports and modified nano-particles for designing model catalysts

C. P. O'Brien, K.-H. Dostert, M. Hollerer, C. Stiehler, F. Calaza, S. Schauermann, S. Shaikhutdinov, M. Sterrer and H.-J. Freund, Faraday Discuss., 2016, 188, 309 DOI: 10.1039/C5FD00143A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements