Issue 6, 2015

Research highlights: towards further understanding nanoparticle–cellular membrane interactions

Abstract

With the continued increase in commercial and industrial use of nanomaterials, their interactions with biological interfaces in applied and natural systems will need to be understood to improve efficacy and assess ecological risks. Model systems are currently being developed that can be used to evaluate nanomaterial or cellular characteristics affecting the mechanism of attachment and uptake. The development of methods that can provide higher throughput for surveying specific interactions is also valuable for evaluating risk and binning systems of similar behavior, which can direct further detailed examination of specific systems. The first highlighted study demonstrates the development of supported phase segregated lipid bilayers with thoroughly characterized structures, which were subsequently used for evaluating specific chemical and morphological properties contributing to observed nanoparticle–membrane interactions. The second study employs a high throughput approach for evaluating lipid bilayer–nanoparticle interactions by using arrays of bilayers on a chip. The arrays provide a large parameter space to be examined, which included changes in both solution and membrane composition. The last study demonstrates the importance of the nanoparticles' mechanical properties on uptake by the cellular membrane using a combined experimental and computational approach.

Graphical abstract: Research highlights: towards further understanding nanoparticle–cellular membrane interactions

Article information

Article type
Highlight
First published
12 Nov 2015

Environ. Sci.: Nano, 2015,2, 664-668

Research highlights: towards further understanding nanoparticle–cellular membrane interactions

J. Pettibone and S. Louie, Environ. Sci.: Nano, 2015, 2, 664 DOI: 10.1039/C5EN90024G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements