Effects of thermophilic composting on oxytetracycline, sulfamethazine, and their corresponding resistance genes in swine manure†
Abstract
Environmental contamination caused by residual antibiotics and antibiotic resistance genes (ARGs) in concentrated animal feeding operations has drawn increasing attention. This study investigated the removal of oxytetracycline (OTC) and sulfamethazine (SMN) as well as the behavior of their corresponding ARGs through a series of simulated composting tests with swine manure. The results indicate that the composting piles became fully mature after 32 days when the thermophilic stage was maintained at 55 °C for 3.5 days. At an initial spiked concentration of 50 (SMN) and 32 mg kg−1 (OTC), their removal efficiency could reach 89.8% and 100%, respectively. An abiotic process was mainly responsible for the degradation of SMN, whereas both abiotic and biotic processes were responsible for the degradation of OTC. Among all the studied ARGs, only the tetracycline resistance genes (TRGs) encoding ribosomal protection proteins remained relatively stable throughout the composting process, while those encoding efflux pump (EFP) and enzymatic inactivation (EI) proteins and sulfonamide resistance genes (SRGs) obviously increased when the composting was complete. The addition of antibiotics inhibited the microbial activity in the early stage of composting but promoted the proliferation of ARGs particularly in the mesophilic stage. Integron-mediated horizontal gene transfers played an important role in the proliferation of most ARG types studied (i.e., EFP TRGs, EI TRG and SRGs). In summary, thermophilic composting of swine manure could remove the studied antibiotics effectively, but failed to prevent the proliferation of their corresponding ARGs.