Issue 3, 2015

Bioelectrodes modified with chitosan for long-term energy supply from the body

Abstract

A 3D nanofibrous network of compressed chitosan in the presence of genipin as the cross-linker, carbon nanotubes and laccase constitutes a new design to enhance the stability and the biocompatibility of biocathodes. The in vitro delivered current was around −0.3 mA mL−1 for 20 days under continuous discharge. A thin film made of chitosan cross-linked with genipin was synthesized and optimized for oxygen and glucose diffusion. This film was used as a biocompatible barrier on the surface of biocathodes implanted in rats. The biocathodes remained operational after 167 days in vivo. This biocathode design minimised the inflammatory response in the first two weeks after implantation. After several months, the growth of macrophages was observed. The electrical connection and the catalytic activity of the enzyme entrapped into the biocathode were demonstrated after almost 6 months of implantation by the ex vivo measurement of the OCP (0.45 V to 0.48 V) and the delivered current (−0.6 mA mL−1) under optimal conditions.

Graphical abstract: Bioelectrodes modified with chitosan for long-term energy supply from the body

Article information

Article type
Paper
Submitted
30 Oct 2014
Accepted
07 Jan 2015
First published
14 Jan 2015

Energy Environ. Sci., 2015,8, 1017-1026

Author version available

Bioelectrodes modified with chitosan for long-term energy supply from the body

S. El Ichi, A. Zebda, J.-P. Alcaraz, A. Laaroussi, F. Boucher, J. Boutonnat, N. Reverdy-Bruas, D. Chaussy, M. N. Belgacem, P. Cinquin and D. K. Martin, Energy Environ. Sci., 2015, 8, 1017 DOI: 10.1039/C4EE03430A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements