Issue 37, 2015

Comment on “The ligand polyhedral model approach to the mechanism of complete carbonyl exchange in [Rh4(CO)12] and [Rh6(CO)16]” by Brian F. G. Johnson, Dalton Transactions, 2015, 44, DOI: 10.1039/C4DT03360D

Abstract

Experimental results (recent IR, DFT calculations and modern multinuclear NMR measurements on Rh-containing clusters, together with earlier VT multinuclear NMR measurements) show that the use of the Ligand Polyhedral Model (LPM) to provide a general mechanism for ligand fluxionality in Transition Metal Carbonyl Clusters (TMCCs) in solution cannot be sustained; instead there are numerous examples of only partial CO-migration over either part or sometimes the whole of the Rh-polyhedron as well as rhodium and carbonyl polyhedral rearrangements of Rh9- and Rh10-TMCCs containing an interstitial P when, in the high temperature limiting spectra, all the metals and all the carbonyls become equivalent and show time-averaged values of 1J(Rh–P) and 2J(P–CO) respectively.

Graphical abstract: Comment on “The ligand polyhedral model approach to the mechanism of complete carbonyl exchange in [Rh4(CO)12] and [Rh6(CO)16]” by Brian F. G. Johnson, Dalton Transactions, 2015, 44, DOI: 10.1039/C4DT03360D

Associated articles

Article information

Article type
Letter
Submitted
19 Mar 2015
Accepted
23 Apr 2015
First published
07 Sep 2015

Dalton Trans., 2015,44, 16611-16613

Author version available

Comment on “The ligand polyhedral model approach to the mechanism of complete carbonyl exchange in [Rh4(CO)12] and [Rh6(CO)16]” by Brian F. G. Johnson, Dalton Transactions, 2015, 44, DOI: 10.1039/C4DT03360D

B. T. Heaton, E. V. Grachova, S. P. Tunik and I. S. Podkorytov, Dalton Trans., 2015, 44, 16611 DOI: 10.1039/C5DT01099C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements