Issue 18, 2015

Bidentate NHC^pyrozolate ligands in luminescent platinum(ii) complexes

Abstract

A bidentate C^N donor set derived from an N-heterocyclic carbene (NHC) precursor linked to a trifluoromethyl (CF3) functionalized pyrazole ring is described for the first time. The ligands have been employed to prepare four new phosphorescent complexes by the coordination of platinum(II) centres bearing cyclometalated phenyl-pyridine/triazole-pyridine chelates. The electronic and steric environments of these complexes were tuned through the incorporation of suitable substituents in the phenyl-pyridine/triazole-pyridine ligands, wherein the position of the phenyl-ring substituent (a CF3 group) also directs the selective adoption of either a trans or a cis configuration between the CNHC and the Cphenyl donor atoms. Molecular structures obtained by X-ray diffraction for three of the complexes confirm a distorted square-planar configuration around the platinum centre, and DFT calculations show that the substituents have a significant influence on the energies of the frontier orbitals. Moreover, a platinum(II) complex featuring the new bidentate NHC^pyrazolate ligand and a bulky adamantyl functionalized pyridine-triazole luminophore was observed to be highly emissive and exhibiting a sky-blue luminescence (λEm = 470 nm) with photoluminescence quantum yields as high as 50% in doped PMMA matrices. A complete photophysical investigation of all of the complexes in solution as well as in the solid state is herein reported.

Graphical abstract: Bidentate NHC^pyrozolate ligands in luminescent platinum(ii) complexes

Supplementary files

Article information

Article type
Paper
Submitted
27 Nov 2014
Accepted
07 Jan 2015
First published
08 Jan 2015

Dalton Trans., 2015,44, 8467-8477

Author version available

Bidentate NHC^pyrozolate ligands in luminescent platinum(II) complexes

A. R. Naziruddin, A. Galstyan, A. Iordache, C. G. Daniliuc, C. A. Strassert and L. De Cola, Dalton Trans., 2015, 44, 8467 DOI: 10.1039/C4DT03651D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements