Issue 3, 2015

Gold-catalyzed cyclopropanation reactions using a carbenoid precursor toolbox

Abstract

Homogeneous gold-catalyzed cyclopropanation has emerged as a powerful method in organic synthesis due to its rich chemistry and fascinating reactivity. This thriving strategy is remarkable for its mild conditions, good selectivity, and high efficiency, which provides complementarity and orthogonality to traditional metal-catalyzed cyclopropanation. This review summarizes recent advances in gold-catalyzed cyclopropanation divided by the type of carbenoid precursors. Besides the commonly used diazo compounds, current approaches enable readily available enynes, propargyl esters, cyclopropenes, cycloheptatrienes, alkynes, and sulfonium ylides as safer surrogates in the realm of gold carbenoid chemistry. Meanwhile, these reactions allow for the rapid building of molecular complexity including synthetically useful and intricate cyclic, heterocyclic, and polycyclic skeletons. The combination of the new reactivity of gold complexes with their capability to catalyze cyclopropanations may lead to myriad opportunities for the design of new reactions. Furthermore, the synthetic utilities of such superior methods have also been illustrated by the total syntheses of selected natural and biologically interesting products and the asymmetric formation of challenging target molecules.

Graphical abstract: Gold-catalyzed cyclopropanation reactions using a carbenoid precursor toolbox

Article information

Article type
Review Article
Submitted
11 Sep 2014
First published
18 Dec 2014

Chem. Soc. Rev., 2015,44, 677-698

Author version available

Gold-catalyzed cyclopropanation reactions using a carbenoid precursor toolbox

D. Qian and J. Zhang, Chem. Soc. Rev., 2015, 44, 677 DOI: 10.1039/C4CS00304G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements