Jump to main content
Jump to site search

Issue 9, 2015
Previous Article Next Article

Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides

Author affiliations

Abstract

Atomically thin group-VIB transition metal dichalcogenides (TMDs) have recently emerged as a new class of two-dimensional (2D) semiconductors with extraordinary properties including the direct band gap in the visible frequency range, the pronounced spin–orbit coupling, the ultra-strong Coulomb interaction, and the rich physics associated with the valley degree of freedom. These 2D TMDs exhibit great potential for device applications and have attracted vast interest for the exploration of new physics. 2D TMDs have complex electronic structures which underlie their physical properties. Here we review the bulk electronic structures of these new 2D materials as well as the theoretical models developed at different levels, along which we sort out the understanding of the origins of a variety of properties observed or predicted.

Graphical abstract: Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides

Back to tab navigation

Publication details

The article was received on 11 Sep 2014 and first published on 04 Dec 2014


Article type: Review Article
DOI: 10.1039/C4CS00301B
Citation: Chem. Soc. Rev., 2015,44, 2643-2663
  •   Request permissions

    Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides

    G. Liu, D. Xiao, Y. Yao, X. Xu and W. Yao, Chem. Soc. Rev., 2015, 44, 2643
    DOI: 10.1039/C4CS00301B

Search articles by author

Spotlight

Advertisements