Issue 48, 2015

Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors

Abstract

Lithium-rich anti-perovskites (LiRAPs) are a promising family of solid electrolytes, which exhibit ionic conductivities above 10−3 S cm−1 at room temperature, among the highest reported values to date. In this work, we investigate the defect chemistry and the associated lithium transport in Li3OCl, a prototypical LiRAP, using ab initio density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations. We studied three types of charge neutral defect pairs, namely the LiCl Schottky pair, the Li2O Schottky pair, and the Li interstitial with a substitutional defect of O on the Cl site. Among them the LiCl Schottky pair has the lowest binding energy and is the most energetically favorable for diffusion as computed by DFT. This is confirmed by classical MD simulations, where the computed Li ion diffusion coefficients for LiCl Schottky systems are significantly higher than those for the other two defects considered and the activation energy in LiCl deficient Li3OCl is comparable to experimental values. The high conductivities and low activation energies of LiCl Schottky systems are explained by the low energy pathways of Li between the Cl vacancies. We propose that Li vacancy hopping is the main diffusion mechanism in highly conductive Li3OCl.

Graphical abstract: Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors

Supplementary files

Article information

Article type
Paper
Submitted
24 Sep 2015
Accepted
27 Oct 2015
First published
28 Oct 2015

Phys. Chem. Chem. Phys., 2015,17, 32547-32555

Author version available

Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors

Z. Lu, C. Chen, Z. M. Baiyee, X. Chen, C. Niu and F. Ciucci, Phys. Chem. Chem. Phys., 2015, 17, 32547 DOI: 10.1039/C5CP05722A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements