Issue 47, 2015

Improving the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 at 4.6 V cutoff potential by surface coating with Li2TiO3 for lithium-ion batteries

Abstract

The Li2TiO3-coated LiNi0.5Co0.2Mn0.3O2 (LTO@NCM) cathode materials are synthesized via an in situ co-precipitation method followed by the lithiation process and thermal annealing. The Li2TiO3 coating layer is designed to strongly adhere to the core-material with 3D diffusion pathways for Li+ ions. Electrochemical tests suggest that compared with pristine NCM, Li2TiO3 serves as both a Li ion conductive layer and a protective coating layer against the attack of HF in the electrolyte, and remarkably improves the cycling performance at higher charged state and rate capability of the LTO@NCM composite material. What is more, phase transformation of NCM and dissolution of metal ions at high-temperatures at 4.6 V cutoff potential are effectively suppressed after LTO-coating. Our study demonstrates that LTO-coating on the surface of NCM is a viable method to improve the electrochemical performance of NCM, especially at high rates and under high-voltage charged conditions.

Graphical abstract: Improving the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 at 4.6 V cutoff potential by surface coating with Li2TiO3 for lithium-ion batteries

Article information

Article type
Paper
Submitted
06 Sep 2015
Accepted
04 Nov 2015
First published
05 Nov 2015

Phys. Chem. Chem. Phys., 2015,17, 32033-32043

Author version available

Improving the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 at 4.6 V cutoff potential by surface coating with Li2TiO3 for lithium-ion batteries

J. Wang, Y. Yu, B. Li, T. Fu, D. Xie, J. Cai and J. Zhao, Phys. Chem. Chem. Phys., 2015, 17, 32033 DOI: 10.1039/C5CP05319F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements