Effect of cation substitution on structural transition: synthesis, characterization and theoretical studies of NaCa4B3O9, NaCaBO3, NaSrBO3 and Li4CaB2O6†
Abstract
Single crystals of NaCa4B3O9, NaCaBO3, NaSrBO3 and Li4CaB2O6 have been successfully synthesized through conventional high-temperature solid-state reactions. They are structurally characterized by single crystal X-ray diffraction and exhibit three-dimensional crystal structures consisting of isolated planar BO3 as fundamental building blocks. Interestingly, for the centrosymmetric crystal structure of NaCaBO3 (Na3Ca3B3O9), as 2/3 of the Na+ ions are substituted by Ca2+ ions, NaCa4B3O9 is obtained and crystallizes in the noncentrosymmetric space group Ama2 (crystal class mm2). A second harmonic generation (SHG) test of the title compound by the Kurtz–Perry method shows that NaCa4B3O9 can be phase matchable with an effective SHG coefficient approximately one-half that of KH2PO4 (KDP). Studies of their optical properties as well as band structure calculations based on density functional theory methods have been also performed. NaCa4B3O9 possesses a moderate birefringence of about 0.05 at 1064 nm. To explain the difference in optical nonlinearity we compared the electronic structures of NaCa4B3O9, KCa4B3O9 and KSr4B3O9 crystals, in particular at the bottom of the conduction band (CB) and the top of the valence band (VB), since they are known to play a primary role in SHG. These electronic structures are responsible for the optical-nonlinearity of NaCa4B3O9, KCa4B3O9 and KSr4B3O9 crystals.