Issue 35, 2015

Enhancement of electroactive β phase crystallization and dielectric constant of PVDF by incorporating GeO2 and SiO2 nanoparticles

Abstract

Poly(vinylidene fluoride) (PVDF) nanocomposites are recently gaining importance due to their unique dielectric and electroactive responses. In this study, GeO2 nanoparticles/PVDF and SiO2 nanoparticles/PVDF nanocomposite films were prepared by a simple solution casting technique. The surface morphology and structural properties of the as-prepared films were studied by X-ray diffraction, scanning electron microscopy, and FT-IR spectroscopy techniques. The studies reveal that the incorporation of GeO2 or SiO2 nanoparticles leads to an enhancement in the electroactive β phase fraction of PVDF due to the strong interactions between the negatively charged nanoparticle surface and polymer. Analysis of the thermal properties of the as-prepared samples also supports the increment of the β phase fraction in PVDF. Variation of dielectric constant, dielectric loss, and ac conductivity with frequency and loading fraction of the nanoparticles were also studied for all the as-prepared films. Dielectric constant of the nanocomposite films increases with increasing nanofiller concentration in PVDF. 15 mass% SiO2-loaded PVDF film shows the highest dielectric constant, which can be attributed to the smaller size of SiO2 nanoparticles and the homogeneous and discrete dispersion of SiO2 nanoparticles in PVDF matrix.

Graphical abstract: Enhancement of electroactive β phase crystallization and dielectric constant of PVDF by incorporating GeO2 and SiO2 nanoparticles

Article information

Article type
Paper
Submitted
09 Jul 2015
Accepted
23 Jul 2015
First published
27 Jul 2015

Phys. Chem. Chem. Phys., 2015,17, 22784-22798

Author version available

Enhancement of electroactive β phase crystallization and dielectric constant of PVDF by incorporating GeO2 and SiO2 nanoparticles

E. Kar, N. Bose, S. Das, N. Mukherjee and S. Mukherjee, Phys. Chem. Chem. Phys., 2015, 17, 22784 DOI: 10.1039/C5CP03975D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements