Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 18, 2015
Previous Article Next Article

Cluster evolution during the early stages of heating explosives and its relationship to sensitivity: a comparative study of TATB, β-HMX and PETN by molecular reactive force field simulations

Author affiliations

Abstract

Clustering is experimentally and theoretically verified during the complicated processes involved in heating high explosives, and has been thought to influence their detonation properties. However, a detailed description of the clustering that occurs has not been fully elucidated. We used molecular dynamic simulations with an improved reactive force field, ReaxFF_lg, to carry out a comparative study of cluster evolution during the early stages of heating for three representative explosives: 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), β-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and pentaerythritol tetranitrate (PETN). These representatives vary greatly in their oxygen balance (OB), molecular structure, stability and experimental sensitivity. We found that when heated, TATB, HMX and PETN differ in the size, amount, proportion and lifetime of their clusters. We also found that the clustering tendency of explosives decreases as their OB becomes less negative. We propose that the relationship between OB and clustering can be attributed to the role of clustering in detonation. That is, clusters can form more readily in a high explosive with a more negative OB, which retard its energy release, secondary decomposition, further decomposition to final small molecule products and widen its detonation reaction zone. Moreover, we found that the carbon content of the clusters increases during clustering, in accordance with the observed soot, which is mainly composed of carbon as the final product of detonation or deflagration.

Graphical abstract: Cluster evolution during the early stages of heating explosives and its relationship to sensitivity: a comparative study of TATB, β-HMX and PETN by molecular reactive force field simulations

Back to tab navigation

Supplementary files

Article information


Submitted
02 Jan 2015
Accepted
01 Apr 2015
First published
01 Apr 2015

Phys. Chem. Chem. Phys., 2015,17, 12013-12022
Article type
Paper

Cluster evolution during the early stages of heating explosives and its relationship to sensitivity: a comparative study of TATB, β-HMX and PETN by molecular reactive force field simulations

Y. Wen, C. Zhang, X. Xue and X. Long, Phys. Chem. Chem. Phys., 2015, 17, 12013
DOI: 10.1039/C5CP00006H

Social activity

Search articles by author

Spotlight

Advertisements