Electrical and thermal transport properties of Pb1−xSnxSe solid solution thermoelectric materials
Abstract
Both lead selenide (PbSe) and tin selenide (SnSe) are promising thermoelectric compounds consisting of earth-abundant elements, between which solid solutions can be formed over a wide composition range. This study investigated the electrical and thermal transport properties of n-type Pb1−xSnxSe (x = 0, 0.01, 0.05, 0.1 and 0.15) solid solutions with emphasis on the effect of Sn substitution. Small amounts of Sn substitution (x ≤ 0.1) increased electrical conductivity but showed less influence on the Seebeck coefficient, leading to improved power factors, which were revealed to be associated with the generation of native Se vacancies. The electrical conductivity tended to decrease when x > 0.1 due to the alloying effect, consequently the thermoelectric figure of merit was not further increased, even though the thermal conductivity can be reduced by increasing Sn content. A maximum dimensionless figure of merit ZT of up to 1.0 was obtained at moderate temperature (773 K) for the composition of Pb0.9Sn0.1Se.