Issue 5, 2015

Adsorbate-driven morphological changes on Cu(111) nano-pits

Abstract

Adsorbate-driven morphological changes of pitted-Cu(111) surfaces have been investigated following the adsorption and desorption of CO and H. The morphology of the pitted-Cu(111) surfaces, prepared by Ar+ sputtering, exposed a few atomic layers deep nested hexagonal pits of diameters from 8 to 38 nm with steep step bundles. The roughness of pitted-Cu(111) surfaces can be healed by heating to 450–500 K in vacuum. Adsorption of CO on the pitted-Cu(111) surface leads to two infrared peaks at 2089–2090 and 2101–2105 cm−1 for CO adsorbed on under-coordinated sites in addition to the peak at 2071 cm−1 for CO adsorbed on atop sites of the close-packed Cu(111) surface. CO adsorbed on under-coordinated sites is thermally more stable than that of atop Cu(111) sites. Annealing of the CO-covered surface from 100 to 300 K leads to minor changes of the surface morphology. In contrast, annealing of a H covered surface to 300 K creates a smooth Cu(111) surface as deduced from infrared data of adsorbed CO and scanning tunnelling microscopy (STM) imaging. The observation of significant adsorbate-driven morphological changes with H is attributed to its stronger modification of the Cu(111) surface by the formation of a sub-surface hydride with a hexagonal structure, which relaxes into the healed Cu(111) surface upon hydrogen desorption. These morphological changes occur ∼150 K below the temperature required for healing of the pitted-Cu(111) surface by annealing in vacuum. In contrast, the adsorption of CO, which only interacts with the top-most Cu layer and desorbs by 200 K, does not significantly change the morphology of the pitted-Cu(111) surface.

Graphical abstract: Adsorbate-driven morphological changes on Cu(111) nano-pits

Article information

Article type
Paper
Submitted
04 Nov 2014
Accepted
05 Dec 2014
First published
09 Dec 2014

Phys. Chem. Chem. Phys., 2015,17, 3032-3038

Adsorbate-driven morphological changes on Cu(111) nano-pits

K. Mudiyanselage, F. Xu, F. M. Hoffmann, J. Hrbek, I. Waluyo, J. A. Boscoboinik and D. J. Stacchiola, Phys. Chem. Chem. Phys., 2015, 17, 3032 DOI: 10.1039/C4CP05088F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements