Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 10, 2015

On the characterization of NaDEHP/n-heptane nonaqueous reverse micelles: the effect of the polar solvent

Author affiliations

Abstract

The behavior of two polar solvents, ethylene glycol (EG) and dimethylformamide (DMF), entrapped in sodium bis-(2-ethylhexyl) phosphate (NaDEHP)/n-heptane reverse micelles (RMs) was investigated using dynamic light scattering (DLS), molecular probe absorption and FT-IR spectroscopy. DLS results reveal the formation of RMs containing EG and DMF as a polar component. To the best of our knowledge this is the first report where both polar solvents are entrapped by the NaDEHP surfactant to effectively create RMs. We use the solvatochromism behavior of the molecular probe, 1-methyl-8-oxyquinolinum betaine (QB), and FT-IR spectroscopy to investigate the physicochemical properties of the non-aqueous RMs. Our results demonstrate that the NaDEHP surfactant interacts through hydrogen bonds with EG at the EG/NaDEHP interface and this interaction is responsible for destroying the bulk structure of pure solvent EG when entrapped in NaDEHP RMs. On the other hand, when DMF is incorporated inside the RMs the bulk structure of DMF is destroyed upon encapsulation by the Na–DMF interaction at the DMF/NaDEHP interface. Our results are completely different than the one observed for DMF/n-heptane/AOT. Our results show how the physicochemical properties, such as micropolarity, microviscosity and hydrogen bond interaction, of nonaqueous NaDEHP/n-heptane RMs interfaces can be dramatically changed by simply using different non-aqueous polar solvents. Thus, these results can be very useful to employ these novel RMs as nanoreactors since the dimensions of the RMs are around 10 to 20 nm.

Graphical abstract: On the characterization of NaDEHP/n-heptane nonaqueous reverse micelles: the effect of the polar solvent

Article information


Submitted
31 Oct 2014
Accepted
06 Feb 2015
First published
09 Feb 2015

Phys. Chem. Chem. Phys., 2015,17, 7002-7011
Article type
Paper
Author version available

On the characterization of NaDEHP/n-heptane nonaqueous reverse micelles: the effect of the polar solvent

S. S. Quintana, R. Dario Falcone, J. J. Silber, F. Moyano and N. Mariano Correa, Phys. Chem. Chem. Phys., 2015, 17, 7002 DOI: 10.1039/C4CP05024J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements