Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 25, 2015
Previous Article Next Article

Branched dimerization of Tat peptide improves permeability to HeLa and hippocampal neuronal cells

Author affiliations

Abstract

A dimeric branched peptide TATp-D designed as an analogue of the HIV-Tat protein transduction domain (TATp), a prototypical cell penetrating peptide (CPP), demonstrates significantly enhanced cell uptake at 0.25 to 2.5 μM. Live cell confocal laser scanning microscopy revealed that multivalency dramatically improved the permeation potency of TATp-D to HeLa and primary hippocampal neuronal cells. The observed enhanced ability of TATp-D to translocate through the membrane is highlighted by a non-linear dependence on concentration, exhibiting the greatest uptake at sub-micromolar concentrations as compared to TATp. Multimerization via bis-Fmoc Lysine offered a synthetically straightforward method to investigate the effects of multivalent CPPs while offering orthogonal handles for cargo attachment, increasing the utility of CPPs at significantly lower concentrations.

Graphical abstract: Branched dimerization of Tat peptide improves permeability to HeLa and hippocampal neuronal cells

Back to tab navigation

Supplementary files

Article information


Submitted
03 Feb 2015
Accepted
23 Feb 2015
First published
23 Feb 2015

Chem. Commun., 2015,51, 5463-5466
Article type
Communication
Author version available

Branched dimerization of Tat peptide improves permeability to HeLa and hippocampal neuronal cells

I. A. Monreal, Q. Liu, K. Tyson, T. Bland, D. S. Dalisay, E. V. Adams, G. A. Wayman, H. C. Aguilar and J. P. Saludes, Chem. Commun., 2015, 51, 5463
DOI: 10.1039/C5CC00882D

Social activity

Search articles by author

Spotlight

Advertisements