Issue 20, 2015

Magnetically-actuated, bead-enhanced silicon photonic immunosensor

Abstract

Magnetic actuation has been introduced to an optical immunosensor technology resulting in improvements in both rapidity and limit of detection for an assay quantitating low concentrations of a representative protein biomarker. For purposes of demonstration, an assay was designed for monocyte chemotactic protein 1 (MCP-1), a small cytokine which regulates migration and infiltration of monocytes and macrophages, and is an emerging biomarker for several diseases. The immunosensor is based on arrays of highly multiplexed silicon photonic microring resonators. A one-step sandwich immunoassay was performed and the signal was further enhanced through a tertiary recognition event between biotinylated tracer antibodies and streptavidin-coated magnetic beads. By integrating a magnet under the sensor chip, magnetic beads were rapidly directed towards the sensor surface resulting in improved assay performance metrics. Notably, the time required in the bead binding step was reduced by a factor of 11 (4 vs. 45 min), leading to an overall decrease in assay time from 73 min to 32 min. The magnetically-actuated assay also lowered the limit of detection (LOD) for MCP-1 from 124 pg mL−1 down to 57 pg mL−1. In sum, the addition of magnetic actuation into bead-enhanced sandwich assays on a silicon photonic biosensor platform might facilitate improved detection of biomarkers in point-of-care diagnostics settings.

Graphical abstract: Magnetically-actuated, bead-enhanced silicon photonic immunosensor

Supplementary files

Article information

Article type
Communication
Submitted
09 Jun 2015
Accepted
26 Jun 2015
First published
26 Jun 2015

Anal. Methods, 2015,7, 8539-8544

Magnetically-actuated, bead-enhanced silicon photonic immunosensor

E. Valera, M. S. McClellan and R. C. Bailey, Anal. Methods, 2015, 7, 8539 DOI: 10.1039/C5AY01477H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements