Issue 22, 2015

Voltage and blockade state optimization of cluster-enhanced nanopore spectrometry

Abstract

Recent work described the use of thiolate-capped gold clusters (Au25(SG)18) with nanopore sensing to increase the residence time of polyethylene glycol (PEG) in an alpha hemolysin pore [Anal. Chem., 2014, 86, 11077]. It was shown that the residence time enhancement narrows the peaks in the PEG-induced current blockade distribution, thus increasing the resolving power of the single molecule nanopore spectrometry (SMNS) technique. Here, we further study the interaction between the cluster and PEG with the goal of optimizing the residence time enhancement for SMNS detection. Specifically, we report the voltage dependence of the enhancement effect and show that, under the conditions studied, the cluster-enhanced residence time is maximized at an applied transmembrane potential near 60 mV. Additionally, we show that the PEG residence time depends on the degree to which the cluster blocks current through the pore and that the PEG on-rate to the pore can be more accurately measured with a cluster in the pore. Finally, we develop a model that describes the cluster-induced shift of the PEG current blockade distribution. We use this model to characterize the interaction between the cluster and PEG and show that it scales linearly with the applied voltage as expected from the proposed enhancement mechanism.

Graphical abstract: Voltage and blockade state optimization of cluster-enhanced nanopore spectrometry

Article information

Article type
Paper
Submitted
07 Jul 2015
Accepted
04 Oct 2015
First published
05 Oct 2015

Analyst, 2015,140, 7718-7725

Voltage and blockade state optimization of cluster-enhanced nanopore spectrometry

A. E. Chavis, K. T. Brady, N. Kothalawala and J. E. Reiner, Analyst, 2015, 140, 7718 DOI: 10.1039/C5AN01368B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements