Highly selective colorimetric bacteria sensing based on protein-capped nanoparticles†
Abstract
A rapid and cost-effective colorimetric sensor has been developed for the detection of bacteria (Bacillus subtilis was selected as an example). The sensor was designed to rely on lysozyme-capped AuNPs with the advantages of effective amplification and high specificity. In the sensing system, lysozyme was able to bind strongly to Bacillus subtilis, which effectively induced a color change of the solution from light purple to purplish red. The lowest concentration of Bacillus subtilis detectable by the naked eye was 4.5 × 103 colony-forming units (CFU) mL−1. Similar results were discernable from UV-Vis absorption measurements. A good specificity was observed through a statistical analysis method using the SPSS software (version 17.0). This simple colorimetric sensor may therefore be a rapid and specific method for a bacterial detection assay in complex samples.