Issue 12, 2014

High refractive index transparent nanocomposites prepared by in situ polymerization

Abstract

High refractive index transparent nanocomposites have been developed by in situ polymerization of a precursor that contains functional monomers and surface modified anatase TiO2 nanoparticles for optoelectronic applications. The monomers are in the liquid form, so environmentally friendly solventless precursors can be prepared. The precursor can be processed into various shapes or thick films (>50 microns) of the nanocomposite. The relationships of the chemical structure of the organic matrix, nanoparticle content and dispersity with the refractive index, transparency, mechanical and thermal properties are systematically investigated. The refractive index, and mechanical and thermal properties of the nanocomposite are increased with increasing TiO2 content and aromatic structure in the organic matrix due to their rigid characteristics. The transparency of the nanocomposite is increased with increasing TiO2 content and dispersity. At the same loading of nanoparticles, the higher dispersity and the better transparency are due to the less extent of Rayleigh scattering. At 18 vol% (60 wt%) of TiO2, the acetic acid modified TiO2/poly(4-vinyl benzyl alcohol) nanocomposite has a refractive index of 1.73 and excellent transparency (>85% from 500 nm to 800 nm). The refractive index of the nanocomposite can be further increased to 1.77 by replacing aliphatic acetic acid modified TiO2 with aromatic phenyl acetic acid modified TiO2. The results of this work provide new knowledge and a new pathway to design a polymer based high refractive index material.

Graphical abstract: High refractive index transparent nanocomposites prepared by in situ polymerization

Supplementary files

Article information

Article type
Paper
Submitted
08 Dec 2013
Accepted
07 Jan 2014
First published
08 Jan 2014

J. Mater. Chem. C, 2014,2, 2251-2258

High refractive index transparent nanocomposites prepared by in situ polymerization

C. Tsai, S. Hsu, C. Ho, Y. Tu, H. Tsai, C. Wang and W. Su, J. Mater. Chem. C, 2014, 2, 2251 DOI: 10.1039/C3TC32374A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements