Issue 31, 2014

Origami magnetic cellulose: controlled magnetic fraction and patterning of flexible bacterial cellulose

Abstract

Cellulose of microbial origin is becoming a commodity structural material with promise in a myriad of potential applications. The range of applications can be further enlarged by nanocomposites that provide additional functional properties to the bacterial cellulose. Here, bacterial cellulose films nanocomposited with iron oxide nanoparticles are fabricated by microwave-assisted thermal decomposition within only 5 min and without the need for any post-synthetic treatment. The in situ synthesized nanoparticles are crystalline, less than 10 nm in size, and with a narrow particle-size distribution. Control over the magnetic fraction (from 4 to 40 wt%) is achieved either by employing undried cellulose, cellulose films dried by different methods, or by adjusting the initial iron precursor concentration. Structural, magnetic, and mechanical characterization of the materials is included. All films react easily to an external magnetic field, present a superparamagnetic behavior at room temperature, and are flexible enough to be bent and folded into complex origami shapes. Interestingly, films with low magnetic fraction are also transparent which is a highly attractive property for magnetic materials since most of them are either metallic or absorb visible light. Finally, preliminary results on a strategy to selectively pattern bacterial cellulose with nanoparticles are presented that pave the way to new uses of functional bacterial cellulose.

Graphical abstract: Origami magnetic cellulose: controlled magnetic fraction and patterning of flexible bacterial cellulose

Supplementary files

Article information

Article type
Paper
Submitted
18 Apr 2014
Accepted
30 May 2014
First published
30 Jun 2014

J. Mater. Chem. C, 2014,2, 6312-6318

Author version available

Origami magnetic cellulose: controlled magnetic fraction and patterning of flexible bacterial cellulose

M. Zeng, A. Laromaine, W. Feng, P. A. Levkin and A. Roig, J. Mater. Chem. C, 2014, 2, 6312 DOI: 10.1039/C4TC00787E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements