New multifunctional phenanthroimidazole–phosphine oxide hybrids for high-performance red, green and blue electroluminescent devices†
Abstract
In this work, two novel hybrids of an electron-accepting phosphine oxide moiety attached to a phenanthroimidazole have been designed and synthesized. The P![[double bond, length as m-dash]](https://www.rsc.org/images/entities/char_e001.gif) O group is used as a point of saturation between the PPI moiety and the outer phenyl groups, so the high triplet energy of PPI is preserved to act as a host for red and green phosphorescent dopants. The strong intermolecular interactions and steric effect of the diphenylphosphine oxide (DPO) moiety endows the films with high quantum yields in the deep-blue emission region. Compared to PPI, the carrier (hole- and electron-)injection/transport properties were greatly promoted by the appended DPO group according to single-carrier device measurement. Besides, the morphological and thermal stabilities were also improved. The multiple functions enable adaptation of several simplified device configurations. The undoped deep-blue fluorescent device exhibits an external quantum efficiency of 2.24% with CIE (0.16, 0.08), very close to the NTSC blue standard CIE (0.14, 0.08). High performance for green (65.4 cd A−1, 73.3 lm W−1 and 18.0%) and red (19.0 cd A−1, 21.3 lm W−1 and 13.5%) phosphorescent devices used as hosts have been achieved. The experimental and theoretical relationships between the molecular structures and the optoelectronic properties are discussed.
O group is used as a point of saturation between the PPI moiety and the outer phenyl groups, so the high triplet energy of PPI is preserved to act as a host for red and green phosphorescent dopants. The strong intermolecular interactions and steric effect of the diphenylphosphine oxide (DPO) moiety endows the films with high quantum yields in the deep-blue emission region. Compared to PPI, the carrier (hole- and electron-)injection/transport properties were greatly promoted by the appended DPO group according to single-carrier device measurement. Besides, the morphological and thermal stabilities were also improved. The multiple functions enable adaptation of several simplified device configurations. The undoped deep-blue fluorescent device exhibits an external quantum efficiency of 2.24% with CIE (0.16, 0.08), very close to the NTSC blue standard CIE (0.14, 0.08). High performance for green (65.4 cd A−1, 73.3 lm W−1 and 18.0%) and red (19.0 cd A−1, 21.3 lm W−1 and 13.5%) phosphorescent devices used as hosts have been achieved. The experimental and theoretical relationships between the molecular structures and the optoelectronic properties are discussed.
 
                



 Please wait while we load your content...
                                            Please wait while we load your content...
                                        